A GSPN Semantics for CTBN with Immediate Nodes
نویسندگان
چکیده
In this report we present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized Continuous Time Bayesian Networks (GCTBN). The formalism allows one to model, in addition to continuous time delayed variables (with exponentially distributed transition rates), also non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. This allows the modeling of processes having both a continuous-time temporal component and an immediate (i.e. non-delayed) component capturing the logical/probabilistic interactions among the model’s variables. The usefulness of this kind of model is discussed through an example concerning the reliability of a simple component-based system. A semantic model of GCTBNs, based on the formalism of Generalized Stochastic Petri Nets (GSPN). is outlined, whose purpose is twofold: to provide a well-defined semantics forGCTBNs in terms of the underlying stochastic process, and to provide an actual mean to perform inference (both prediction and smoothing) on GCTBNs. The example case study is then used, in order to highlight the exploitation of GSPN analysis for posterior probability computation on the GCTBN model. Acronym list: BN Bayesian belief Network CIM Conditional Intensity Matrix CPT Conditional Probability Table CTBN Continuous Time Bayesian Network CTMC Continuous Time Markov Chain DBN Dynamic Bayesian Network FTA Fault Tree Analysis GCTBN Generalized Continuous Time Bayesian Network GSPN Generalized Stochastic Petri Net MRF Markov Random Field
منابع مشابه
Generalized Continuous Time Bayesian Networks and their GSPN Semantics
We present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN). The formalism allows one to model continuous time delayed variables (with exponentially distributed transition rates), as well as non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example c...
متن کاملGeneralizing Continuous Time Bayesian Networks with Immediate Nodes
An extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN) is presented; the formalism allows one to model, in addition to continuous time delayed variables (with exponentially distributed transition rates), also non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through ...
متن کاملA Semantics for Every GSPN
Generalised Stochastic Petri Nets (GSPNs) are a popular modelling formalism for performance and dependability analysis. Their semantics is traditionally associated to continuous-time Markov chains (CTMCs), enabling the use of standard CTMC analysis algorithms and software tools. Due to ambiguities in the semantic interpretation of confused GSPNs, this analysis strand is however restricted to ne...
متن کاملPerformance Analysis of Computing Servers using Stochastic Petri Nets and Markov Automata
Generalised Stochastic Petri Nets (GSPNs) are a widely used modeling formalism in the field of performance and dependability analysis. Their semantics and analysis is restricted to “well-defined”, i.e., confusion-free, nets. Recently, a new GSPN semantics has been defined that covers confused nets and for confusion-free nets is equivalent to the existing GSPN semantics. The key is the usage of ...
متن کاملOne Net Fits All: A unifying semantics of Dynamic Fault Trees using GSPNs
Dynamic Fault Trees (DFTs) are a prominent model in reliability engineering. They are strictly more expressive than static fault trees, but this comes at a price: their interpretation is non-trivial and leaves quite some freedom. This paper presents a GSPN semantics for DFTs. This semantics is rather simple and compositional. The key feature is that this GSPN semantics unifies all existing DFT ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010